Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching.
نویسندگان
چکیده
Microtubule (MT) turnover within the four principal MT arrays, the cortical array, the preprophase band, the mitotic spindle and the phragmoplast, has been measured in living stamen hair cells of Tradescantia that have been injected with fluorescent neurotubulin. Using the combined techniques of confocal laser scanning microscopy and fluorescence redistribution after photobleaching (FRAP), we report that the half-time of turnover in spindle MTs is t 1/2 = 31 +/- 6 seconds, which is in excellent agreement with previous measurements of turnover in animal cell spindles. Tradescantia interphase MTs, however, exhibit turnover rates (t 1/2 = 67 +/- seconds) that are some 3.4-fold faster than those measured in interphase mammalian cells, and thus are revealed as being highly dynamic. Preprophase band and phragmoplast MTs have turnover rates similar to those of interphase MTs in Tradescantia. The spatial and temporal aspects of the fluorescence redistribution after photobleaching in all four MT arrays are more consistent with subunit exchange by the mechanism of dynamic instability than treadmilling. This is the first quantification of MT dynamics in plant cells.
منابع مشابه
Cell cycle-dependent changes in the dynamics of MAP 2 and MAP 4 in cultured cells
To examine the behavior of microtubule-associated proteins (MAPs) in living cells, MAP 4 and MAP 2 have been derivatized with 6-iodoacetamido-fluorescein, and the distribution of microinjected MAP has been analyzed using a low light level video system and fluorescence redistribution after photobleaching. Within 1 min following microinjection of fluoresceinated MAP 4 or MAP 2, fluorescent microt...
متن کاملMicrotubule dynamics in fish melanophores
We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X-rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were e...
متن کاملTubulin dynamics in cultured mammalian cells
Bovine neurotubulin has been labeled with dichlorotriazinyl-aminofluorescein (DTAF-tubulin) and microinjected into cultured mammalian cells strains PTK1 and BSC. The fibrous, fluorescence patterns that developed in the microinjected cells were almost indistinguishable from the pattern of microtubules seen in the same cells by indirect immunofluorescence. DTAF-tubulin participated in the formati...
متن کاملRapid dynamics of the microtubule binding of ensconsin in vivo.
Microtubule-associated proteins (MAPs) are proteins that reversibly bind to and regulate microtubule dynamics and functions in vivo. We examined the dynamics of binding of a MAP called ensconsin (E-MAP-115) to microtubules in vivo. We used 5xGFP-EMTB, a construct in which the microtubule-binding domain of ensconsin (EMTB) is fused to five copies of green fluorescent protein (GFP), as a reporter...
متن کاملMultiple mechanisms regulate NuMA dynamics at spindle poles.
The large coiled-coil protein NuMA plays an essential role in organizing microtubule minus ends at spindle poles in vertebrate cells. Here, we use both in vivo and in vitro methods to examine NuMA dynamics at mitotic spindle poles. Using fluorescence recovery after photobleaching, we show that an exogenously expressed green-fluorescent-protein/NuMA fusion undergoes continuous exchange between s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1994